
{학습 목적} Chapter 5에서는 앞에서 배웠던 선형변환을 3차원 공간에 적용해본다. 이 부분을 학습하는 이유는 변환이 입력 벡터를 *움직여서* 출력 벡터를 만든다는 컨셉을 다시 한번 상기시켜 3차원 공간에서의 선형변환을 이해해보기 위해서라고 생각한다. 즉, 수치적 표현보다는 시각적 표현으로 개념을 이해하여 3차원 공간으로의 개념 확장을 보여주고 있는 것 같다. 3차원에서의 선형변환도 2차원과 마찬가지로 기저 벡터의 움직임을 알면 완벽하게 알아낼 수 있다. 이 때 기저 벡터로 z축이 추가되는데 z축의 단위 벡터는 k-hat이라고한다. 어떤 벡터 [x,y,z]가 변환 후 어디가 되는 지는 2차원에서 했던 방법과 동일하다. 각 좌표 값을 스케일링 팩터로 보면 된다. 각 기저 벡터들을 그 팩터로 스케일링해..